Trustpower’s Mahinerangi Dam in New Zealand’s South Island is a concrete arch and gravity abutment dam built in 1931, subsequently raised in 1946 and strengthened with tie-down anchors in 1961.
This paper discusses a 3D finite element analysis of the dam and the predicted performance of the arch section under Safety Evaluation Earthquake (SEE) loading against identified potential failure modes.
Current guidelines and recent seismic hazard assessments recommend earthquake loadings higher than what was originally accounted for in previous decades. A Comprehensive Safety Review identified stability under SEE loading as a potential deficiency, so a programme of works was commenced to evaluate and better understand the seismic risk by using modern day tools and technology to evaluate the dam against current performance standards.
The final model incorporated the results of extensive laboratory testing, high-resolution LiDAR survey data and dynamic calibration using ambient-vibration monitoring. Motion recordings across the face of the dam during the 2016 Kaikōura earthquake were also used to validate the model. The reservoir has been explicitly modelled together with the opening, closing and sliding of contraction joints and the foundation interface. This allowed the modelling of permanent displacements and the redistribution of loads within the dam under SEE loading, which had been shown to be an important behaviour from the previous stages of analysis.
$15.00
ANCOLD is an incorporated voluntary association of organisations and individual professionals with an interest in dams in Australia.