2015 Poster – 40 years of seismic monitoring of reservoir triggered seismicity: Australian case studies

Vicki-Ann Dimas, Wayne Peck, Gary Gibson and Russell Cuthbertson

Globally, reservoir triggered seismicity (RTS) is a phenomenon sometimes observed in newly constructed large dams worldwide, for over 50 years now. Over 95 sites have been identified to have caused RTS by the infilling of water reservoirs upon completion of their constructions worldwide. In Australia, there are seven confirmed sites with observed RTS phenomenon that are summarized by temporal and spatial means.
With almost 40 years of seismic monitoring, primarily within eastern Australia, several of Australia’s largest dams have monitored and recorded many RTS events. At present, twelve dams are 100 metres and above in height as possible candidates, with seven of these actually causing RTS and a disputed possible eighth dam.
Important factors of RTS are reservoir characteristics (depth of the water column and reservoir volume), geological and tectonic features (how active nearby faults are and how close to the next cycle of stress release they are temporally) and ground water pore pressure (decrease in pore volume under compaction of weight of reservoir and diffusion of reservoir water through porous rock beneath). RTS is an adjustment process often delayed for several years after infilling of reservoir before eventually subsiding within 10 to 30 years, when seismic activity then returns to its prior state of stress.
Generally there are two type of RTS events, either a major fault near the reservoir most likely leading to an earthquake exceeding magnitude 5.0 to 6.0, or more commonly, a series of small shallow earthquakes.
Seismic monitoring of all dams (except for Ord River) are presented with spatial and temporal series of maps and cross sections, showing the largest earthquake, build-up and decay of RTS events.
Keywords: Seismic monitoring, reservoir triggered seismicity (RTS), earthquake cycle

Buy this resource