2015 – Hydration-Induced Stresses in Concrete Buttressing of Existing Concrete Gravity Dams

Nihal Vitharana, Nuno Ferreira

The raising and/or stabilising of existing concrete gravity dams by continuous concrete buttressing is a viable solution and, in some cases, it is the only solution available. There are few medium-large dams in Australia currently under consideration for raising with continuous buttressing.

Two of the major issues to be surmounted are: (a) the existing dam should not be subjected to cracking (particularly on the upstream face) due to heat-hydration effects, and (b) the requirement for the two dam bodies to resist the hydrostatic and other loadings as a monolith (unified dam).

However, there is great need for understanding the mechanisms involved in selecting an appropriate heat-of-hydration model and in calculating thermal stresses rationally. Due to such lack of understanding, expensive precautions, mostly with compounding conservatisms, would be adopted in concept and detailed designs eg. shear-keys on the interface, artificial cooling, post-grouted interface, anchor bars at the interface, concrete with high cement contents. On the other hand, unsafe designs could be the result.

The paper discusses these issues highlighting that a rational approach can be adopted to economise the design and construction processes. An example is also presented to demonstrate how the potential for temperature-induced cracking in new and old dam bodies can be evaluated with reduced uncertainty by considering all the mechanisms involved in a holistic way.

Keywords: Heat-of-Hydration modelling, raising concrete dams, thermal stresses, concrete buttressing

Buy this resource