2011 – Modelling Studies to Design and Assess Decommissioning Actions for a Seismically Unsafe, Concrete Arch Dam

 Krey Price, Mike Harvey, Bob Mussetter, Stuart Trabant

The California Department of Water Resources, Division of Dam Safety (DWR-DSD), has determined that San Clemente Dam on the Carmel River in Monterey County, California, does not meet seismic safety standards. Several alternatives have been considered to decommission the dam and eliminate the hazard, including thickening of the 25-m-high, concrete arch structure, lowering the dam, and complete removal. At the present time, the upstream reservoir that had an original storage capacity of about 1.8 GL, is essentially filled with sediment. The 29-km reach of the Carmel River between the dam and the Pacific Ocean passes through urbanised areas within the upscale Carmel Valley; flooding and channel stability in these areas are significant concerns. The Carmel River also contains habitat for the endangered steelhead and red-legged frog that could be positively or negatively affected by the decommissioning.

After an extensive series of hydraulic and sediment transport modelling studies, two actions remain under consideration: (1) dam thickening, which will require reconstruction of the existing fish ladder and construction of an adjacent, 3-metre diameter sluice gate to prevent sediment build-up from blocking the ladder outlet, and (2) removal of the dam and rerouting the river into a tributary branch of the reservoir, which would isolate approximately 65 percent of the existing sediment deposits from future river flows and eliminate a significant fish-passage problem. Both options were modelled extensively in hydrologic, hydraulic, and sediment transport applications. Since available models do not adequately represent sediment dynamics at the sluice gate, a special sediment routing model was formulated to evaluate this aspect of Option 1. Option 2 is currently preferred by the resource agencies, since it would optimise endangered species habitat; however, this option would be three to four times more expensive than Option 1, and funding limitations may impact the alternative selection. Evaluation efforts are ongoing, along with approaches to address liability issues associated with the decommissioning actions for the privately owned facility, while optimising the benefits and costs of the selected action.

Modelling Studies to Design and Assess Decommissioning Actions for a Seismically Unsafe, Concrete Arch Dam

Buy this resource