2003 – USE OF ARTIFICIAL AERATION TO CONTROL IRON AND MANGANESE IN RESERVOIRS

By 1976 head loss in the 23 km long 750/900 mm diameter CLMS pipeline from Eppalock Reservoir to Bendigo had increased from 45.7 m to 98.2 m (115%) after only 12 years service. The cause was identified as increased friction from soft voluminous iron and manganese bacterial slime building up on the pipe walls and increasing the friction. Inspection of the drained pipes in the dry gave little indication of the problem since the slime consolidated to an innocuous looking thin smooth coating as it dried.

1960 studies by Tyler and Mitchell at the University of Tasmania for the Hydro-Electric Commission had shown that the micro-organisms producing these slime growths were present in all pipelines. However they required the presence of iron and manganese in the water to flourish and produce flow reduction. Remobilisation from oxygen deficient bottom sediments was shown in the 1940’s by Pearsall and Mortimer in England to be a major source of iron and manganese in reservoir water and this could be controlled if sufficient dissolved oxygen could be provided to convert the reducing conditions at the sediments to oxidising conditions.

An experimental aeration system designed by the author was operated in the 180,000 ML Eppalock Reservoir for 19 days during March 1977. This mixed the reservoir to the depth of the aerators (24 m) increasing the low 10% saturation dissolved oxygen at this depth to a high 94% saturation thereby changing chemical conditions from reducing to oxidising. As a result the iron concentration in the surface water decreased from 2.04 mg/L to 0.54 mg/L but there was little change in the pre-aeration 0.03 mg/L manganese concentration with this short period of aeration. The iron concentration in the water flowing in the pipeline changed from 1.78 mg/l to 0.57 mg/l.

The problem of pipe flow reduction from bacterial slime growth on the pipe walls is discussed in this paper and examples are given of the use of automatic reservoir aeration to overcome the problem including costs and results.

Buy this resource

$15.00