Many dam structures in Australia were designed and built in the 1950s and 60s with limited hydrological information. As a result existing spillway structures are under-sized for today’s revised probable maximum floods (PMF). Potential problems such as the generation of excessive negative pressure over spillway crest under increased flood condition could be encountered. This may cause instability or cavitation damage to the spillway. The raised flow profile may also have adverse impacts on crest bridges and gate structures.

Historically, physical models have been constructed in hydraulic laboratories to study these behaviours, but they are expensive, time-consuming and there are many difficulties associated with scaling effects. Today, with the use of high-performance computers and more efficient computational fluid dynamics (CFD) codes, the behaviour of hydraulic structures can be investigated numerically in reasonable time and expense.

This paper describes the two- and three-dimensional CFD modelling of spillway behaviour under rising flood levels. The results have been validated against published data and good agreement was obtained. The technique has been applied to investigate several spillway structures in Australia.

Buy this resource