2003 – Experimental Investigation of Internal Erosion by the Process of Suffusion in Embankment Dams and their Foundations

Chi-fai WAN, Robin FELL

This paper presents the findings of experimental investigation of internal erosion by the process of suffusion within embankment dams and their foundations.

Suffusion is the process by which finer soil particles are moved through constrictions between larger soil particles by seepage forces. Soils susceptible to suffusion are usually described as internally unstable. Understanding of the suffusion process is important to the assessment of the risk of internal erosion in an embankment dam and its foundation. Suffusion results in a coarser soil structure, leading to increased seepage, progressive deterioration of the dam or its foundation, and a higher risk of toe instability. Suffusion within the protective filter of a dam may result in a coarser filter, rendering it ineffective in protecting the core materials from erosion.

Two types of suffusion tests, namely the downflow test and the upflow test, have been conducted at the University of New South Wales. The downflow test aims at identifying the types of soils that are susceptible to suffusion, whereas the upflow test aims at identifying the hydraulic gradient at which suffusion is initiated. This paper presents the initial findings of the downflow test. Eighteen downflow tests have been carried out on fourteen clay-silt-sand-gravel soils. The Kenney and Lau (1985, 86) method, which is commonly used for assessing the internal stability of coarse-grained soils, appears to be too conservative when used to predict the internal stability of silt-sand-gravel or clay-silt-sand- gravel soils, whereas the Burenkova (1993) method appears to provide better predictions. Further testing is required to define more accurate criteria for determining the internal stability of broadly-graded clay-silt-sand-gravel soils.

Buy this resource