2017 – A Turkey’s Nest Dam on Top of a Waste Rock Dump – An Innovative Solution for the Kidston Pumped Storage Project

Richard Herweynen, Jamie Campbell, Mohsen Moeini

Hydropower storage plays an expanding role in integrated power systems internationally and can enable increased use of intermittent renewable energy sources such as wind and solar.With an increased amount of renewable energy within the Australian grid, pumped storage has gained increased focus in the past 2years. Entura have been working with Genex Power Ltd. to investigate, evaluate, optimise and design the Kidston Pumped Storage Project, located at the old Kidston gold mine in Northern Queensland. Through this design process, the final arrangement developed included an upper reservoir turkey’s nest dam to be built on the existing waste rock dump on the northern side of the Eldridge Pit, using the existing waste rock dump material and lining it with an HDPE liner. The original waste rock dump was formed during the mining operation by progressively dumping the waste rock predominantly from the Eldridge Pit excavation, with the haul truck traffic being the only compaction that occurred. Since the closure of the mine about 20 years ago, some consolidation of the waste rock dump has occurred.As a result, the key risks identified for the construction of the turkey’s nest dam on top of the waste rock dump were: (1) the stability of the slopes of the waste rock dump, which were generally at the angle of repose for the rockfill material; (2) the absolute settlement of the waste rock dump as the final dam crest level requires a settlement allowance in excess of the flood freeboard requirements; and (3) the differential settlement as excess differential settlement could cause fatigue stress cracking within the liner.This paper presents the investigation and modelling undertaken to confirm the feasibility of constructing this turkey’s nest dam on top of the existing rock waste dump, utilising the historical data on dumped rockfill dams. The paper also presents the feasibility design developed for the upper storage.

Buy this resource

$15.00