2015 – Recent Developments in Estimating the Annual Exceedance Probability of Probable Maximum Precipitation

R. Nathan, P. Jordan, M. Scorah, S. Lang, G. Kuczera, M. Schaefer, E. Weinmann

This paper describes the development and application of two largely independent methods to estimate the annual exceedance probability (AEP) of Probable Maximum Precipitation (PMP). One method is based on the Stochastic Storm Transposition (SST) approach, which combines the “arrival” and “transposition” probabilities of an extreme storm using the total probability theorem. The second method – termed “Stochastic Storm Regression”(SSR) – combines frequency curves of point rainfalls with regression estimates of areal rainfalls; the regression relationship is derived using local and transposed storms, and the final exceedance probabilities are derived using the total probability theorem. The methods are used to derive at-site estimates for two large catchments (with areas of 3550 km2 and 15280 km2) located in inland southern Australia. In addition, the SST approach is used to derive regional estimates for standardised catchments within the Inland GSAM region. Careful attention is given to the uncertainty and sensitivity of the estimates to underlying assumptions, and the results are compared to existing AR&R recommendations.
Keywords: Annual exceedance probability, Probable Maximum Precipitation.

Buy this resource