2012 – Design and construction of seismic enhancement works for Stuart Macaskill Lakes, Upper Hutt, New Zealand

M C N Taylor, Dr H E Cherrill, S F Croft, S F Eldridge

The Stuart Macaskill Lakes are two raw water storage lakes with a combined storage of approximately 3280 ML supplying Wellington City, New Zealand. The lakes are High Potential Impact Category (PIC) earth embankment dams constructed on terrace gravel deposits adjacent to the Hutt River and located within approximately 20 to 50 metres of the Wellington Fault Deformation Zone. Construction of the lakes began in 1982 and they were commissioned in 1985.
In early 2008, the lake’s owner Greater Wellington Regional Council (GWRC), embarked on a programme to supplement Wellington City’s water supply storage. Whilst that study is ongoing, GWRC engaged Tonkin & Taylor (T&T) to investigate the feasibility of increasing the Stuart Macaskill Lakes capacity as an interim measure.
The feasibility study concluded in late 2009 that the lake dam embankments could be raised by up to 1.3 metres in height to gain an approximate additional 450 ML of water storage. An important finding of that feasibility study has been that the seismic requirements have increased significantly since the construction of the lakes. To address this issue GWRC is currently constructing Stage Two of a two stage construction programme to both raise the lakes and to incorporate seismic resistant features into the lakes.
The primary design features are downstream rock buttressing in the critical areas of the lakes and synthetic lining the inside of the lake embankments. The buttressing works were completed in early 2011 and the lining and crest raising works are due for completion in 2013.
This paper summarises the design, laboratory testing and construction to enhance the lakes performance during very strong seismic accelerations (Peak Ground Accelerations of up to 1.08g) expected during a maximum design earthquake originating from the Wellington Fault.
Keywords: Water Reservoir, Seismic Design, Geomembrane, Rock Buttressing, Seismic Risk Assessment, Wellington Fault

Buy this resource