Monique de Moel, A/Professor Jayantha Kodikara, Dr Gamini Adikari
All embankment dams have some seepage as the impounded water seeks paths of least resistance through the dam and its foundation. Seepage must, however, be controlled to prevent internal erosion of the embankment or foundation and avoid damage to surrounding structures. Embankment dams are designed to operate under controlled steady state seepage, which over time may change due to movement in the foundation and the dam, chemical actions and other forms of deterioration. Effective monitoring of seepage within embankment dams is therefore essential in regards to management of dam safety and prevention of failure.
Traditional methods of seepage monitoring have involved measurement or visual monitoring on the downstream side of the dam after the seepage has occurred. Effective, early detection of seepage in embankment dams has been difficult as it originates and develops in the subsurface. Infrared Thermal Imaging is such a technique that is non-contact, non-intrusive, simple and flexible. The analysis draws on the temperature behaviour and the heat capacity of materials within the body of the dam and consequently allows the user to identify and isolate temperature variations along the surface of interest. This paper describes the method, application and feasibility of infrared thermal imaging for the detection of seepage in earth and rockfill embankment dams. The value of this technique as an additional tool in the surveillance of dams is discussed.
Infrared thermal imaging has been in use in other fields of engineering for condition monitoring and defect detection of structures. It has shown great potential in identifying variations in surface characteristics, which may not be evident through visual inspection alone. In this paper, reliability of this technique for seepage detection in embankment dams has been analysed using 8 case studies in order to arrive at a fair understanding of the best conditions under which Infrared Thermal Imaging field inspections should be carried out. The results of field investigations undertaken at these dams suggest that Infrared Thermal Imaging is a useful and effective tool for detection of seepage and an aid in identifying seepage behaviour.
Keywords: Seepage Detection, Infrared Thermal Imaging, Dam Surveillance, Monitoring
$15.00
ANCOLD is an incorporated voluntary association of organisations and individual professionals with an interest in dams in Australia.
System maintenance will be performed on the servers that host the ANCOLD Digital Guidelines, on Saturday, December 21st @ 10:00 PM AEDT which will require the servers to reboot.
Total downtime during that event could be up to 4 hours and will commence sharply at 10 pm AEDT. During that time end users will not be able to view or access their secured content.