2007 – Seismic hazard assessment of the Lake Edgar Fault

A. Swindon, M. Gillon, D. Clark, P Somerville, R. Van Dissen and D. Rhoades

The 45 km long Lake Edgar Fault in south-west Tasmania passes through the right abutment of the Edgar Dam and into Lake Pedder, and within 30 km of three other large dams. In 2004 an independent seismotectonic study concluded that the fault had moved three times in the past 48–61,000 years, with the last movement around 18,000 years ago.

In order to better constrain the risk assessment for the nearby dams, the likelihood of a rupture recurrence along the fault was required. Two independent methods were investigated. The first was a comprehensive review of active faulting and deformation of stable continental region faults within Australia, and a comparison with similar faults worldwide with the well studied behaviour of the Lake Edgar Fault. The study results demonstrated the episodic nature of stable continental region fault activity, separated by much longer periods of quiescence, with a decreasing likelihood of rupture following each event within an active period. The time window of applicability of this paleoseismological study is thousands to tens of thousands of years.

The second study looked for evidence of precursory seismic activity in the vicinity of the fault which could indicate an increasing risk of rupture over the next decade or so. This method does not predict specific earthquakes, but does forecast whether the level of future earthquake activity in the short to intermediate term is relatively low, high or at an average level. Using a catalogue of seismic activity for south-eastern Australia, the study concluded that there is no evidence for precursory seismic activity in the area of the Lake Edgar Fault that would give rise to an elevated forecast rate of occurrence of moderate magnitude earthquakes either in the short to intermediate term. This precursory method has a window of applicability of a decade to perhaps several decades.

The combination of these two studies has advanced the understanding of the Lake Edgar Fault activity by both setting it in the long-term stable continental region fault context and investigating the presence of short-term behavioural activity. This has allowed the seismic hazard to be re-assessed as nearer to ambient levels than earlier postulated. This work has applicability for other fault scarps in Australia, both with regards to better defining the long-term hazard (103-105 years) posed by a fault, and potentially also giving advance (short-term 101 years) notification of increasing risk of fault rupture. Better long- and short-term hazard information allows more complete and thorough engineering decisions to be made.

Keywords: Earthquake, seismic, fault rupture, dam safety, risk assessment, Hydro Tasmania, Lake Edgar Fault.

Buy this resource