2007 – Computational fluid dynamics models and physical hydraulic modelling – do we need both? The design of the Hinze Dam Stage 3

Mike Phillips and Karen Riddette

The use of Computational Fluid Dynamics (CFD) models in the dams industry has increased significantly in recent years and conversely the use of physical hydraulic models has decreased. Typical design approaches for an upgrade of similar magnitude to the Hinze Dam Stage 3 project would have allowed for considerable time to develop a preliminary spillway design before hydraulic modelling was introduced, potentially requiring only one type of model. So is there a need for both types of models?

Because of the complex hydraulics associated with the spillway required for the Hinze Dam Stage 3 raise and accelerated schedule, the utilisation of CFD and 1:50 Froude Scale physical hydraulic models was necessary. Both models were constructed independent of each other. Both models complemented each others strengths and weaknesses, and each provided critical information at the following different stages of design:
• Spillway selection and conceptual design stage – the CFD model results were highly valuable in steering the selection of spillway type and configuration, particularly with visual representations of the ranges of flow for each spillway option.
• Preliminary design – in a one week period, 90 to 95% of the final spillway layout was resolved with interactive modifications of the physical hydraulic model.
• Detailed design – both the physical hydraulic model and the CFD model were utilised to determine water pressures, velocities and water surfaces and evaluate cavitation potential as input to detailed design.

In the case of the Hinze Dam Stage 3 project, it was highly advantageous to utilise a CFD and physical hydraulic model to achieve the design outcomes at each phase of the design. The dual-model study approach also provided advantages for project management of the design and stakeholder involvements.

Keywords: Computational fluid dynamics, CFD, physical hydraulic model, spillway, hydraulics

Buy this resource

$15.00