2006 – Which Belts And Braces Do We Really Need? – Application of a Functional Safety Methodology to a Dam Safety Assurance Programme

C Lake and J Walker

Meridian Energy is the owner and operator of a chain of hydro dams on the Waitaki River in the
South Island of NZ. It operates a Dam Safety Assurance Programme which reflects current best
practice; consequently it has focused primarily on managing civil dam assets. Advances in plant control technology have allowed de-manning of our power stations, dams and canals through centralised control. The safety of our hydraulic structures is increasingly reliant on the performance of Dam Safety Critical Plant (DSCP) – those items of plant (eg water level monitoring, gates, their power and control systems, and sump pumps) which are required to operate automatically, or under operator control, to assure safety of the hydraulic structures in all reasonably foreseeable circumstances.

Recent dam safety reviews have highlighted that the specification and testing of our DSCP is based on the application of ‘rules of thumb’ which have been established through engineering practice (eg. “monthly tests”, “third level of protection”, “backup power sources”, “triple voted floats”). The
adequacy of these engineering practices is difficult to defend as they are not based on published
criteria. The realisation that such rules may not be relevant to the increased demand on, and complexity of, DSCP led us to ask “Which belts and braces do we really need?” The current NZSOLD (2000) and ANCOLD (2003) Dam Safety guidelines give little guidance regarding specific criteria for the design and operation of DSCP.

Meridian has identified the use of Functional Safety standards (from the Process industry, defined in IEC 61511) as a tool which can be applied to the dams industry to review the risks to the hydraulic structures, the demands on the DSCP, and utilise corporate “tolerable risk” definitions to establish the reliability requirements (Safety Integrity Levels) of each protection, and determine lifecycle criteria for the design, operation, testing, maintenance, and review of those protections.

This paper outlines the background to identifying Functional Safety as a suitable tool for this purpose, and the practical application of Functional Safety Analysis to Meridian’s DSCP.

Buy this resource