2006 – The Ability of Monitoring to Detect Internal Erosion and Slope Instability in Embankment Dams

Robin Fell

Internal erosion and piping within embankment dams may initiate in cracks caused by differential settlement or desiccation, in cracks caused by hydraulic fracture and in very poorly compacted layers of soil. It generally cannot occur unless one of these defects is present because backwards erosion, the other mechanism for internal erosion, will not occur in embankments under normal gradients and will not occur in cohesive soils unless gradients are exceptionally high.

As a result it is very unlikely that it will be possible to detect initiation of erosion with piezometers, and the most likely successful method is seepage observation and monitoring. However the time from the first detection of increased seepage to breach of the dam may be very short-a matter of hours in some situations.

Thoughtfully positioned and read piezometers are more likely to be successful in identifying the critical gradients which may lead to the onset of backwards erosion in cohesionless soils in the foundation of dams.

Piezometers are more useful in establishing the pore pressures for use in analysis of stability, but in most cases where stability is marginal undrained strength analysis is required and the pore pressures and effective strengths alone are not sufficient to assess stability. In a number of cases differential settlements, and acceleration of settlements have proven valuable in detecting the on-set of instability and the conditions in which internal erosion and piping to initiate. Once these conditions are recognised more detailed survey monitoring and borehole inclinometers can be valuable in better defining the geometry of instability.

Buy this resource