2006 – Performance of New Orleans’ Hurricane Protection System: The Good, The Bad, and The Ugly

G. L. Sills, N. D. Vroman, J. B. Dunbar, R. E. Wahl

In August 2005, Hurricane Katrina made landfall just east of New Orleans and inflicted widespread damage on the Hurricane Protection System (HPS) for southeast Louisiana. Subsequent flooding was a major catastrophe for the region and the Nation.

The response to this disaster by the U.S. Army Corps of Engineers included forming an Interagency
Performance Evaluation Taskforce (IPET) to study the response of the system and, among many lines of inquiry, to identify causes of failure of levees and floodwalls.

Beginning in September 2005, the IPET gathered geotechnical forensic data from failed portions of levees and floodwalls. Major clues discovered at the 17th Street break, including clay wedges dividing a formerly continuous layer of peat, led to an explanation of the failures. Field data from the failure sites were interpreted within the regional geologic setting of the New Orleans area to identify geologic and geotechnical factors that contributed to the catastrophe. The data gathered provided a method that resulted in the “IPET Strength Model.” This strength was used in analyses of the I-walls and levees using limit equilibrium stability analyses, physical modeling using a powerful centrifuge, and finite-element analyses.

The results of all three types of studies revealed a consistent mode of failure that included deformation of the I-walls and foundation instability. The IPET also studied non-failed I-walls at Orleans and Michoud Canals, to identify geotechnical, structural, and geologic distinctions between failed and non-failed reaches.

Performance of the HPS during Hurricane Katrina offered many lessons to be learned. These lessons learned include: the lack of resiliency in the HPS; the need for risk-based planning and design approach; the need for the examination of system-wide functionality; and knowledge, technology, and expertise deficiencies in the HPS arena. In addition, understanding of the failure mechanisms and related causes of the levee and floodwall breaches provides a new direction for future designs of hurricane protection systems.

Buy this resource