2010 – Using a clay cemented sandstone as RCC aggregate – a major breakthrough at Wyaralong Dam

Richard Herweynen, Robert Montalvo, John Ager

The choice of materials used in the construction of a dam is one of the most critical decisions in the design process. Our natural behaviour as engineers is to adopt materials which have proven performance, and which conform to Australian or international standards, which sometimes causes us to overlook the specific conditions and demands of the project at hand. In an environment where the majority of concrete produced is for structural purposes, the properties of these concretes is often vastly different to those desired for mass concrete structures such as dams and spillways.

The big question at Wyaralong Dam was could onsite aggregate be used in the Roller Compacted Concrete (RCC)? The Wyaralong Dam is located in the Gatton Sandstone (early Jurassic), predominantly feldspathic to lithic‐feldspathic sandstones with a clay matrix. Early analyses and tests suggested that the Gatton Sandstone was not suitable for RCC aggregate due to a 68% wet/dry strength reduction, high water absorption (5.2 – 7.5%) and petrographic interpretation that clay content was mainly swelling clay, leading to durability concerns.

Due to significant community, safety and cost issues with importing aggregate, Wyaralong Dam Alliance (WDA), during the development of the RCC mix design for Wyaralong Dam, chose to pursue the use of onsite quarried sandstone aggregate instead of importing aggregate. Additional petrographic and XRD analyses and extensive durability tests were undertaken on cores of sandstone and RCC samples, including wet‐dry cycles, soak tests in ethylene glycol, soaks in sodium hydroxide, and heating and cooling cycles. These tests indicated that, if swelling clays are present, they do not impact the durability behavior of the RCC aggregate.

The substantial effort put into testing the sandstone aggregate has paid off for WDA. Not only have the results indicated that the RCC mix performs remarkably well in terms of durability, but the very low modulus of elasticity of the mix has provided exceptional performance in terms of thermal loading; with all the related benefits in reduced restrictions to placement schedule and cooling requirements. Onsite sandstone was not only proven to be a feasible option, it has been demonstrated that it is the best option for the project. Details of the study are provided in this paper.

Keywords: Roller Compacted Concrete (RCC), Sandstone, Aggregate, Clay, Mix, Durability

Buy this resource