2010 – Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project

Tony Harman, Richard Herweynen, Malay Ghosh

Following a number of years of investigation into the condition of the existing 1960’s post tensioned anchors at Catagunya Dam Hydro Tasmania embarked on an options study to determine the best method to restore the dam stability to acceptable limits for the long term. The required solution was intended to not only resolve the issue of anchor deterioration but also to increase the flood capacity of the dam.
Based on preliminary design work a concrete buttress solution was recommended and approved for detailed design. The preliminary design utilised a simplified, 2-dimensional, rigid body model, including crack analysis. As part of the detailed design a finite element model was developed to refine the preliminary design. However, this model did not support the simplified analysis and further non-linear finite element analysis demonstrated that the proposed passive buttress design solution was not technically feasible. The options were reconsidered and the adopted solution was to replace the original anchors with new modern anchors with a high level of corrosion protection.
The new anchors adopted are the largest post tensioned anchor loading currently used for a dam in the world. This along with the existing post-tensioned anchors and the tight geometry of the dam, which has a central spillway with a cantilevered ogee crest, provided significant challenges with the design of this dam upgrade. Some of the key design challenges included:
– Appropriate level of modeling and analysis to be able to make sound design decisions. (Hydraulic modeling and FEA).
– Congestion due to the tight geometry of the original design.
– Anchor head block detail to ensure the loads would be adequately secured and dispersed into the dam body
– Crest cantilever support to ensure that structural integrity was retained during construction and later in service. Innovative installation of carbon fibre reinforcement was used.
– Strain compatibility. It was important to ensure the structural contribution of new and old working together and that the consequences of application of new large stresses was manageable.
– Existing anchor degradation. The design needed to ensure that stability compliance was achieved for complete to zero effectiveness over time.
– Maintaining operability of dam and power station during construction.
– Achieving an effective long term maintainable solution.

This paper will present the risk associated with committing to a solution too early and the design challenges and the solutions finally developed, providing the dam industry with a valuable reference for future similar projects.

Buy this resource

$15.00